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Abstract—Active Disturbance Rejection Control (ADRC) has
proven to be an efficient control method, however, the tuning of
its parameters is a complicated endeavor. This paper explores the
use of reference point based dominance in the traditional multi-
objective non-dominated sorting genetic algorithm (NSGA-II) to
perform the parameter tuning. The algorithm is applied to a
simulation and physical implementation of an inverted pendulum
system. The optimization method generated values that offered
suitable performance among various fronts.

Index Terms—Active Disturbance Rejection Control, Genetic
Algorithms, Multi-Objective Optimization

I. INTRODUCTION

Active Disturbance Rejection Control (ADRC) is an error-
based method used to control the behavior of a generic plant.
ADRC has the advantage of being able to compensate for
disturbances to the plant compared to other control methods
such as Proportional-Integral-Derivative (PID) [1]. Generally,
a PID controller is tuned for a specific operation, where the
disturbance introduced to a plant is constant or negligible. This
may be sufficient for many cases, however, if the process
is sensitive to control effort or significant and/or random
disturbances are experienced, a more robust control method
should be used.

Robust controllers are often model-based. This adds an
element of complexity to the controller design and requires
significantly more background knowledge about a plant to
create the model. In many cases creating a model for a plant is
not feasible or, if time is of the essence, resource consuming.
This is where active disturbance rejection flourishes, since
ADRC is error based and the exact mathematical model need
not be known. ADRC is a viable substitute for PID where
a more robust controller is necessary [2]–[5]. PID controllers
have three tuning parameters, each with well defined prop-
erties. ADRC, however, can have upwards of seven tuning
parameters. Genetic Algorithms (GAs) were used to optimize
an ADRC for an unmanned underwater vehicle [6] and for
an aircraft [7]. Particle Swarm Optimization and their variants
were used in the design of force controllers [8], temperature
control [9], and rocket position [10]. In other applications
Ant Colony Optimization [11] and a Chaotic Cloud Cloning
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Selection Algorithm [12] were also used. All of these methods
used single objective optimization algorithms to optimize only
one specific parameter of their designs. Optimizing physical
systems, however, is not a single objective task. An ADRC can
be used to optimize conflicting parameters such as rise time,
settling time, overshoot, controller effort, and tracking error.
In the majority of design problems these objectives need to be
considered and balanced.

A better approach to automate the tuning of an ADRC
should incorporate a multi-objective optimizer. Standard algo-
rithms used to solve multi-objective problems include NSGA-
II, SPEA2, and NCRO. However, in problems with many ob-
jectives the performance of these algorithms drops drastically
[13], [14]. For this reason, other solvers capable of solving
multi-objective problems have to be used.

The problem encountered by all GA based solvers can be
traced back to the dominance of points in multi-objective
problems. As the number of objectives increases the number
of non-dominated solutions also increases. With enough ob-
jectives, all points in the solution become non-dominated. To
address this issue, researchers have suggested use of reference
point domination. In NSGA-III reference-point dominance is
used to improve the diversity of the solutions along the Pareto
front [15]. The algorithm forces the solutions to distribute
along the searchspace, which can guarantee that solutions
will be found relatively fast [16]. This concept was further
developed in [17], where another algorithm, θ-NSGA-III, used
the same reference points in NSGA-III to push solutions
closer to the Pareto front. This method was than combined
with preference incorporation approaches in [18] to create
a new algorithm, RPD-NSGA-II. This algorithm further im-
proved convergence and diversity of the solutions while out-
competing both of its predecessors. Since the RPD-NSGA-II
algorithm was the most efficient of the existing multi-objective
solvers, it was selected to tackle the multi-objective problem
presented in tuning the variables present in an ADR controller.

II. PLANT RESPONSE IDENTIFICATION

For the purpose of this paper, the plant to be evaluated
will be a classical inverted pendulum on a cart. A simplified
drawing of the system is shown in Fig. 1. The cart with mass
M is moved along a linear rail via a timing belt actuated by
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Fig. 1. Simplified setup of an inverted pendulum on a cart.

a DC motor. The equations of motion about the cart in the
horizontal direction x can be summarized as follows:

(M +m)ẍ+ bcẋ+mlθ̈pcos(θp)−mlθ̇2
psin(θp) =

2τm
dp

, (1)

where m is the mass of the pendulum, bc is the viscous friction
between the cart and the linear rail, l is the distance between
the pivot point and the pendulum mass centre, τm is the motor
torque, dp is the pitch diameter of the timing belt pulley, and
θp is the angular position of the pendulum. Throughout this
paper the operators ˙(·) and (̈·) represent the first and second
time derivatives, respectively. The cart linear acceleration ẍ
can be equated to the motor shaft angular acceleration θ̈m
through the timing belt pulley’s pitch diameter:

ẍ =
dp
2
θ̈m, (2)

and the motor torque τm can be related to the control input
(voltage Vm) through the relationship:

τm =
KM

Ra
Vm, (3)

where KM is the motor constant and Ra is the motor winding
resistance. Considering the forces acting normal to the pendu-
lum, the following can be obtained:

(Jp +ml2)θ̈p +mglsin(θp) +mlẍcos(θp) = 0, (4)

where Jp is the pendulum inertia, and g is the gravitational
constant. Since the pendulum will attempt to be controlled
around the π radians position, the small angle approximation
for deviation angle θdev , (cos(θp) ≈ −1, sin(θp) = sin(π −
θdev) ≈ −θdev) is used to approximate the above equation
along with θ̇2

p ≈ 0 to provide the resulting equations of motion
for Eqs. (1) and (4), respectively, as:

(M +m)ẍ+ bcẋ−mlθ̈dev =
2τm
dp

, (5)

(Jp +ml2)θ̈dev +mglθdev −mlẍ = 0, (6)

Combining Eqs. (2), (3), (5), and (6) yields:

θ̈dev =
(M +m)mlg

q
θdev −

mlbcdp
2q

θ̇m +
2mlKM

Raq
Vm (7)

θ̈m =
2m2l2g

dpq
θdev −

Jp +ml2

q
θ̇m +

2KM (Jp +ml2)

dpRaq
Vm

(8)
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Fig. 2. Block diagram of the controller. The tracking differentiator creates
a transient profile of the states to compensate for and limit drastic changes
caused by differentiation; the nonlinear feedback creates a weighted sum of
all state error and proposes an input to the plant. The extended state observer
creates a value for total disturbance by comparing the actual output with an
estimated output.

where q = (M + m)Jp + Mml2. With the above equations,
the state space model is formed as follows:


θ̇m
θ̈m
θ̇dev
θ̈dev

 =


0 1 0 0

0 a22 a23 0

0 0 0 1

0 a42 a43 0


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θm
θ̇m
θdev
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+


0

b2
0

b4

Vm (9)

where:

a22 =
mlbcdp

2q
, a23 =

(M +m)mlg

q
, a42 =

Jp +ml2

q
,

a43 =
2m2l2g

dpq
, b2 =

2mlKM

Raq
, b4 =

2KM (Jp +ml2)

dpRaq
.

III. GENERALIZED MULTI-STATE ACTIVE DISTURBANCE
REJECTION CONTROLLER

A block diagram of the controller is shown in Fig. 2. It
shows a system with three states, however, the number of states
is a variable component of the controller. Consider a SISO
time varying system with n states xi ∈ R, i = 1, 2, .., n, an
extension of [19]. The system can be described as:



ẋ1 = f1(t, x1, x2, . . . , xn, D(t))

ẋ2 = f2(t, x1, x2, . . . , xn, D(t))
...

ẋn = fn(t, x1, x2, . . . , xn, D(t)) + b(t, x1, x2, . . . , xn)u

y = x1,
(10)

where fi, i = 1, 2, . . . , n and b are non-linear functions
representing the system, including external disturbance D(t).
u(t) is the control input and y(t) is the output. Although there
are n ‘total disturbance’ terms fi, i = 1, 2, . . . , n, one can
estimate all disturbances by setting x̄1 = y and:

x̄2 = f1(t, x1, x2, . . . , xn, D(t)), (11)



Therefore, Eq. (10) can be written as:

˙̄x1 = x̄2

˙̄x2 = x̄3 = ∂x̄2

∂t + ∂x̄2

∂x1
x̄2 + ∂x̄2

∂D
∂D
∂t

+∂x̄2

∂x2
f2(t, x1, x2, . . . , xn, D(t)) +

∑n
k=3

∂x̄2

∂xk
x̄2

...
˙̄xn = ∂x̄n

∂t +
∑n−1

k=1
∂x̄n

∂xk
x̄n + ∂x̄n

∂D
∂D
∂t

+∂x̄n

∂xn
fn(t, x1, x2, . . . , xn, D(t))

+∂x̄n

∂xn
b(t, x1, x2, . . . , xn)u

y = x̄1,
(12)

To estimate the total disturbance, consider first a linear estima-
tion for the potentially non-linear b term as b̄(t). Extending the
system to consider a new state representing total disturbance
as x̄n+1, ˙̄xn and ˙̄xn+1 in (12) can be redefined as:{

˙̄xn = x̄n+1 + b̄(t)u(t)

˙̄xn+1 = x̄n
(13)

where the total disturbance can be combined into:

x̄n+1 =
∂x̄n
∂t

+

n−1∑
k=1

∂x̄n
∂xk

x̄n +
∂x̄n
∂D

∂D

∂t

+
∂x̄n
∂xn

fn(t, x1, x2, . . . , xn, D(t))

+

(
∂x̄n
∂xn

b(t, x1, x2, . . . , xn)− b̄(t)
)
u(t) (14)

Part of the ADRC scheme implements an extended state
observer. With the system of extended states, one can write
the state estimator using a Luenberger observer as follows:

˙̂x1 = x̂2 + β01(y(t)− ŷ(t))

˙̂x2 = x̂3 + β02(y(t)− ŷ(t))
...
˙̂xn = x̂n+1 + βn(y(t)− ŷ(t)) + b̄(t)u(t)

˙̂xn+1 = βn+1(y(t)− ŷ(t))

ŷ = x̂1,

(15)

where β0i i = 1, 2, . . . , n + 1 are the observer gains for the
general system. This allows the ADR control law to be:

u = − x̂n+1 − u0

b̄
(16)

where u0 is the proposed input from a non-linear feedback
weighted combiner:

u0 = k1(r− x̂1)+k2(ṙ− x̂2)+ · · ·+kn(
n−1
r − x̂n)+

n
r, (17)

where r is the reference control input and ki, i = 1, 2, . . . , n
are tunable gains to achieve a desired performance depending
on the needs of the user. The encased equations for the
state estimator, Eq. (15), represents a particular state class
and its derivatives. For instance, this could include linear
position, linear velocity, and acceleration. Additional systems
of equations can be written for other state classes as in [20].
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Fig. 3. Controller Schematic for the Inverted Pendulum

A. Controller Gains

Throughout this paper, the discrete nonlinear feedback com-
biner will take the form of the fhan function from [21], which
has three extra controllable parameters per function call. The
resulting control law for the inverted pendulum is:

u0 = −fhan(e1, ce2, h1, r1)− z3

b̄
, (18)

where e1 and e2 are the observed proportional and time-
varying error values, c is a fine tuning parameter, h1 is a
controller aggressiveness factor closely related to the sampling
frequency of the controller, r1 is an acceleration limiting
function, and z3 is the total disturbance estimated by the
observer. It is important to note that these three gains are
unique to every controlled state in the plant that is observed
by an extended state observer. Taking all of the total con-
troller tunable parameters into consideration, the gains that
are to be optimized in this paper are the observer gains βi,
i = 1, 2, . . . , n + 1 from Eq. (15) and the discrete feedback
combiner gains c, h1, and r1 from Eq. (18). Throughout the
literature on active disturbance rejection control, the choices
of the aforementioned gains are more objective than analytical.
The proposed gains from [21] are at most a good starting point
for an optimization process, which will be used to obtain a set
of gains for any unique low-order plant. The complete block
diagram for the proposed controller is shown in Fig. 3.

IV. CONTROLLER GAIN OPTIMIZATION

The performance of the ADRC system will depend on the
values of the gains used. For the inverted pendulum plant
there are two extended state observers as shown in Fig. 3:
one that monitors the position of the cart and the other that
monitors the angular position of the pendulum. Each extended
state observer has three observer gains, β01, β02, and β03,
an acceleration limit of the tracking differentiator, r, and the
damping coefficient, c. Lastly, h1p and h1c are parameters
for the pendulum and cart, respectively, that determine the
aggressiveness of their control loops [21]. As previously dis-
cussed, the gains will be adjusted to optimize performance for
several objectives, namely: tracking error of the cart, tracking
error of the pendulum, controller effort, rise time, percent
overshoot, settling time, and steady state error as shown in
Fig. 4. Repeated sampling was performed to account for the
stochastic nature of the algorithm. Each sample was performed
with 1000 generations. The crossover and mutation variation
parameters were set to 20, as per recommendation from [22].
Boundary conditions were applied to the parameters to prevent
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Fig. 4. The carts position (thick black line) changes in response to the
reference signal (thick grey line). Rise time, tr , percent overshoot, P , and
settling time, ts, within 5% error margin. The tracking error, Et, is the integral
of the error between the reference and the response signal (shaded regions).

TABLE I
OPTIMIZER BOUNDARY CONDITIONS

Variable Range

Aggr. Control Loop 1e−5 < h1p, h1c < 1e−1

Acceleration Limit 1e−3 < rp, rc < 1e2

Damping Coefficient 0.5 < cp, cc < 1.5
Viscous Friction Est. 1e−5 < b0 < 1e−1

Observer Gains 0.5 < β01p, β01c < 2

1e−8 < β0(2,3)p, β0(2,3)c < 1e−3

infeasible solutions. The conditions are presented in Table I.
In order to simulate a rather challenging environment, the
inverted pendulum was commanded to respond to a change
in desired cart position, starting with a step input from 0 m to
0.1 m, and then following a sine wave with angular frequency
1 rad/s as 0.1 sin(t). Apart from the change in cart position,
a disturbance was added to the system to try and bring the
pendulum out of equilibrium. An impulse of 0.087 radians
(≈ 5o) applied to the pendulum angle was introduced to the
system at 5.5 seconds to show that the rejection controller is
able to handle this disturbance.

As discussed in the introduction, the optimizer used for this
task is the RPD-NSGA-II from [18]. The reference normalized
hyperplane was set to have 10 divisions between fitness values.
From this hyperplane, each normalized candidate fitness vector
was given a convergence distance d1 to its nearest reference
point using the diversity metric d2. The density of each
reference point was then computed and used to truncate the
final reference-point dominated front to be passed to the next
generation. The crossover scheme used in this optimization
process was a simulated binary crossover (SBX) which is
evaluated in more depth in [23] and [24]. The mutation
variation was done with polynomial mutation similar to that
described in [22] and the variation process was inherited from
[25].

V. RESULTS

To verify the results of the optimizer and simulation, a set
of the tuned gains were implemented on a physical inverted
pendulum system. The angle of the pendulum bar and the
rotation of the motor shaft were measured using AMT102-V
quadrature encoders. Fig. 5 demonstrates the performace of
the optimized parameters at various generations by selecting
members of the population that dominate on the tracking error
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front. Fig. 6 demonstrates the experimentally validated cart
performance results with the ADRC gain values found with
the optimizer.
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Fig. 6. Experimental results. The inverted pendulum model validation for the
cart position with the pendulum detached.

The RPD-NSGA-II algorithm was able to compute the
parameter values to achieve the desired performance on the
inverted pendulum system. The simulation showed a promising
time response to the set of optimized parameters. These values
were also tested on the physical implementation of the inverted
pendulum and were also successful.

VI. CONCLUSIONS

The most difficult portion of ADRC is the tuning of the
system parameters. Presented in this paper was the successful
implementation of RPD-NSGA-II to optimize the parameters
required for ADRC on an inverted pendulum system. By
using a multi-objective optimization technique coupled with
a simulation, the parameters required to achieve the desired
performance for a physical system were determined. The
RPD-NSGA-II routine proved capable of handling this
multi-objective optimization problem to provide the end user
with a set of dominating solutions such that the user can
choose gain values based on their needs. There are a wide
number of applications for an ADRC optimization method.
Testing the method on more complicated systems with an
increased number of objectives could further validate the
robustness and applicability of the optimizer.
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